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1 Introduction
In the last few decades stochastic processes delayed via the inverse of the subordina-
tors gained popularity due to the fact they can model "trapping events", i.e. time periods
when the process rests. In finance, such models can describe delays between trades (Scalas
(2006)) or interest rate data for developing countries (Janczura et al. (2011)). One way to
capture this kind of behaviour are time-fractional models. In hydrology, time-fractional
models can capture behaviour such as sticking and trapping of contaminant particles in a
porous medium or river flow (Chakraborty et al. (2009), Schumer et al. (2003)). In statis-
tical physics, modeling random waiting times between particle jumps in continuous-time
random walks is done via fractional models (Meerschaert & Scheffler (2004)). For system-
atic read on stochastic models for fractional calculus see Meerschaert & Sikorskii (2012).
On the other hand, classical models such as autoregressive moving average (ARMA) pro-
cesses, their continuous counterparts, i.e. continuous-time autoregressive moving average
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(CARMA) processes as well as diffusions cannot capture such behaviour and therefore
aren’t adequate for modeling "trapping events". Motivated by this issue their delayed
counterparts via inverse of subordinators have been studied. Recently, fractional Pear-
son diffusions have been studied in detail (Leonenko et al. (2013a,b, 2017)). Pearson
diffusions include the well known Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein
(1930)), as well as Cox-Ingersoll-Ross(CIR) diffusion (Cox et al. (2005)). Fractional Pear-
son diffusions, i.e. time-changed (delayed) Pearson diffusions via the inverse of the stable
subordinator have the long-range dependence property, as well as applicable class of sta-
tionary distributions. On the other hand, continuous-time autoregressive process delayed
via the inverse of the stable subordinator (dCAR process) have been recently analyzed in
Gajda et al. (2016), Wyłomańska & Gajda (2016). In particular, in Wyłomańska & Gajda
(2016) codifference structure for dCAR(1) process is examined, as well as the simulation
and estimation procedures. In Gajda et al. (2016) dCAR(1) process is used to model
technical data, i.e. it is used to model behavior of particular mechanical system.
Motivated by the work in Gajda et al. (2016), Wyłomańska & Gajda (2016) we study cor-
relation properties of the dCAR(p) process, i.e. the second-order Lévy-driven continuous-
time autoregressive process delayed by the inverse of the stable subordinator and exam-
ine the long-range dependence of the process. Therefore, we do not observe Lévy-driven
continuous-time autoregressive processes with infinite driving variance (for the full de-
scription of the process see Section 2).
Continuous-time autoregressive process of order p, CAR(p) process, can be symbolically
represented in analogy to discrete case with equation:

dXp−1(t) + α1X
p−1(t)dt+ . . .+ αpX(t)dt = σdW (t), t ≥ 0,

where driving process {W (t), t ≥ 0} is the standard Brownian motion.
In this paper, we focus on Lévy-driven CAR(p) process, i.e. CAR(p) process with Lévy
process as the driving process. Reason for the usage of such processes is the rich class of
non-Gaussian and heavy-tailed marginal distributions of underlying process, due to usage
of Lévy process instead of Brownian motion as the driving process. Brockwell made such
extensions for the Lévy-driven CARMA(p, q) processes, giving necessary and sufficient
conditions for such process to be weakly and strictly stationary process, as well as the
explicit form of the corresponding cumulant generating function with several examples
(see Brockwell (2001b), Brockwell & Marquardt (2005)).
Moreover, we focus on dCAR(p) process, i.e. Lévy-driven CAR(p) process delayed by the
inverse of the stable subordinator for low degrees of p since we will be able to give explicit
calculations and formulas for the correlation structure and distributional properties, which
makes it a more trackable process then the general case.
The paper is organized as follows. Section 2 contains preliminary facts regarding Lévy-
driven CAR(p) process, while in Section 3 we define the corresponding dCAR(p) process,
i.e. delayed Lévy-driven CAR(p) process. In Section 4 we explicitly derive the correlation
structure for the dCAR(p) processes, emphasizing low orders. Next, in Section 5 we
propose the definition for the long-range dependence of the non-stationary stochastic
process and show that dCAR(p) processes are long-range dependent, emphasizing low
orders, while in Section 6 we examine their distributional properties.
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2 Lévy-driven CAR(p) processes
Formal definition of the Lévy-driven CAR(p) process is as follows. Let us introduce
p-variate process

S(t) := [X(t), X1(t), . . . , Xp−1(t)]T , p ∈ N (2.1)
which satisfies SDE

dS(t)− AS(t)dt = edL(t), t ≥ 0, (2.2)

where {L(t), t ≥ 0} is the Lévy process (e.g. see Sato (1999)) such that EL(1)2 <∞,

A =



0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
−αp −αp−1 −αp−2 · · · −α1

 , e =



0
0
...
0
1


and

S(0) is independent of the driving Lévy process {L(t), t ≥ 0} (2.3)
(if p = 1 then A = −α1).
Solution of SDE (2.2) satisfies

S(t) = eA(t−s)S(s) +
∫ t

s
eA(t−u)edL(u), t > s ≥ 0. (2.4)

Definition 2.1. Lévy-driven CAR(p) process is defined as {X(t), t ≥ 0}, the first
component of the process (2.1), where the process {S(t), t ≥ 0} is the strictly stationary
solution of (2.4) which satisfies (2.3).

Additionally, we will assume that the driving process {L(t), t ≥ 0} in SDE (2.2) is the
second-order Lévy processes which satisfy

EL(t) = µt, V ar(L(t)) = σ2t, t ≥ 0, for some real constants µ, σ2. (2.5)

Lévy-driven CAR(p) processes with this additional assumption are referred to as second-
order Lévy-driven CAR(p) processes by Brockwell (see Brockwell (2001b)). Since we
will only consider such processes, we will simply refer to them as Lévy-driven CAR(p)
processes.
Necessary and sufficient conditions for weak stationarity of Lévy-driven CAR(p) process
are given via Proposition 1. in Brockwell & Marquardt (2005). For process {S(t), t ≥ 0}
to be weakly stationary it is both necessary and sufficient that all eigenvalues of matrix
A have strictly negative real parts and

S(0) has mean and covariance matrix of
∫ ∞

0
eAuedL(u).

On the other hand, necessary and sufficient conditions for strict stationarity of Lévy-
driven CAR(p) process are given via Proposition 2. in Brockwell & Marquardt (2005).
For process {S(t), t ≥ 0} to be strictly stationary it is both necessary and sufficient that
all eigenvalues of matrix A have strictly negative real parts and

S(0) d=
∫ ∞

0
eAuedL(u).
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Now it follows that the same conditions are necessary and sufficient for Lévy-driven
CAR(p) processes {X(t), t ≥ 0} to be weakly and strictly stationary.
Eigenvalues of matrix A are the roots of the characteristic equation (see e.g. Brockwell
(2001a))

C(λ) = λp + α1λ
p−1 + α2λ

p−2 + . . . αp−1λ+ αp = 0. (2.6)
When p = 1 or p = 2, characteristic roots of equation (2.6) have negative real parts if
and only if all coefficients in the same equation are positive. From here we assume that
conditions for strict stationarity of process {X(t), t ≥ 0} are fulfilled.
Since stationary Lévy-driven CAR(p) process has the same autocovariance structure as
stationary CAR(p) process (driven by Brownian motion), it follows that autocovariance
function (ACF) of the stationary Lévy-driven CAR(p) process is of the form

Cov(X(t), X(s)) =
∑

λ:C(λ)=0

σ2

(m− 1)!

[
dm−1

dzm−1
(z − λ)mez|t−s|
C(z)C(−z)

]∣∣∣∣
z=λ

where m is the multiplicity of the root λ of the equation (2.6) (see Brockwell (2001a)). If
the roots are distinct, last formula simplifies to

Cov(X(t), X(s)) =
∑

λ:C(λ)=0

σ2eλ|t−s|

C ′(λ)C(−λ) . (2.7)

We also use some ideas from Scalas & Viles (2014).
Therefore, stationary Lévy-driven CAR(1) process has autocorrelation function (ACF) of
the form

Corr(X(t), X(s)) = e−α1|t−s|, (2.8)
where α1 > 0 in order to have the stationarity of the process.
In the case of stationary Lévy-driven CAR(2) process (2.6) becomes

z2 + α1z + α2 = 0, (2.9)

where α1 > 0, α2 > 0 again for the stationarity of the process. Depending on the sign of
the discriminant D = α2

1− 4α2 of the equation (2.9) we will have three cases for the ACF
of the stationary Lévy-driven CAR(2) process:
• D > 0 - the over-damped case

Corr(X(t), X(s)) = −λ2e
λ1|t−s| + λ1e

λ2|t−s|

λ1 − λ2
, (2.10)

where λ1, λ2 are two distinct real roots of the equation (2.9).

• D < 0 - the under-damped case

Corr(X(t), X(s)) = −λ̄e
λ|t−s| + λeλ̄|t−s|

λ− λ̄
, (2.11)

where λ = α + βi, λ̄ = α − βi are two distinct complex roots of the equation (2.9)
and α < 0, β > 0. Notice that

α = −α1

2 , β =
√
α2 −

α2
1

4 .

ACF (2.11) can also be written in the following form

Corr(X(t), X(s)) =
(

cos (β(t− s))− α

β
sin (β|t− s|)

)
eα|t−s|. (2.12)
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• D = 0 - the critically-damped case

Corr(X(t), X(s)) =
(

1 + α1

2 |t− s|
)
e−

α1
2 |t−s|, (2.13)

where λ1 = λ2 = −α1
2 is the double real root of the equation (2.9).

3 dCAR(p) processes
Let {X(t), t ≥ 0} be the stationary Lévy-driven CAR(p) process defined in the last
section. The delayed Lévy-driven CAR(p) process (dCAR(p) process) {Xγ(t), t ≥ 0} is
defined via a non-Markovian time-change Et independent of X(t):

Xγ(t) := X(Et), t ≥ 0,

where Et = inf{x > 0 : Dx > t} is the inverse of the standard γ-stable Lévy subordinator
{Dt, t ≥ 0}, 0 < γ < 1, with the Laplace transform E [e−sDt ] = exp{−tsγ}, s > 0. Since
Et rests for periods of time with non-exponential distribution, the process {Xγ(t), t ≥ 0}
is non-Markovian and non-stationary process.
Let us denote by ft(·), the density of the random variable Et for a fixed t and by gγ(·)
density of the random variable D1. Then it follows

ft(x) = t

γ
x−1− 1

γ gγ(tx−1/γ). (3.1)

The Laplace transform of this density is

E[e−sEt ] =
∫ ∞

0
e−sxft(x)dx = Eγ(−stγ), s ∈ C, (3.2)

where
Eγ(z) :=

∞∑
j=0

zj

Γ(1 + γj) , z ∈ C

is the Mittag-Leffler function (see Gorenflo et al. (2016)).
To see that (3.2) is valid for any complex s, notice that for any 0 < γ < 1 and any complex
s

γEγ(−s) =
∞∫
0

e−sxx−1−1/γgγ(x−1/γ)dx (3.3)

(see Theorem 2.10.2, Zolotarev (1986)). Now combining (3.1) and (3.3) we directly obtain
(3.2).
On the other hand, two-parametric Mittag-Leffler function is defined as

Eα, β(z) :=
∞∑
j=0

zj

Γ(αj + β) ,

where α, β ∈ C, Re(α) > 0, Re(β) > 0.
This function was first studied by Wiman in 1905 (see Wiman (1905)). Notice when
β = 1, two-parametric Mittag-Leffler function reduces to classical Mittag-Leffler function
Eα(z). For details regarding Mittag-Leffler function we refer to Gorenflo et al. (2016),
Popov & Sedletskii (2011).

5



4 Correlation structure of dCAR(p) processes
In this section we compute formulas for the correlation structure of dCAR(p) processes,
emphasizing low orders. The correlation function (CF) of the dCAR(p) process {Xγ(t), t ≥
0} where 0 < γ < 1 is of the form

Corr[Xγ(t), Xγ(s)] = Corr[X(Et), X(Es)] =
∞∫
0

∞∫
0

Corr[X(u), X(v)]H(du, dv), (4.1)

where the last integral is the Lebesgue-Stieltjes integral with respect to the bivariate
distribution function H(u, v) := P [Et ≤ u,Es ≤ v] of the process {Et, t ≥ 0}.
In order to compute the last integral we use the idea of bivariate integration by parts (see
Lemma 2.2, Gill et al. (1995))

∞∫
0

∞∫
0

F (u, v)H(du, dv) =
∞∫
0

∞∫
0

H([u,∞]× [v,∞])F (du, dv) +
∞∫
0

H([u,∞]× (0,∞])F (du, 0)

+
∞∫
0

H((0,∞]× [v,∞])F (0, dv) + F (0, 0)H((0,∞]× (0,∞]).

(4.2)

This approach was exploited for calculating the correlation structure of the fractional
Pearson diffusions, i.e. time changed (delayed) stationary Pearson diffusions via the in-
verse of the γ-stable subordinator (see Leonenko et al. (2013a)). Difference between
dCAR(p) processes and fractional diffusions is in the outer process, which is stationary
Lévy-driven CAR(p) process in dCAR(p) case, and stationary diffusion in the fractional
diffusion case.
Since we will use results from Leonenko et al. (2013a), for clarity we define fractional
Pearson diffusion. Let {Y (t), t ≥ 0} be the stationary Pearson diffusion, i.e. a stationary
solution of SDE

dY (t) = µ(Y (t))dt+ σ(Y (t))dW (t), t ≥ 0,

where

µ(x) = −θ(x− µ), σ2(x) = 2θk(b2x
2 + b1x+ b0), θ > 0, k > 0, µ ∈ R,

b0, b1, b2 reals and not all simultaneously equal to 0, and {W (t), t ≥ 0} is the standard
Brownian motion. Pearson diffusion has the ACF of the form

Corr(Y (s), Y (t)) = e−θ|t−s|,

while fractional Pearson diffusion, i.e. the process {Yγ(t), t ≥ 0} where

Yγ(t) := Y (Et), t ≥ 0,

has correlation structure of the form (see Theorem 3.1., Leonenko et al. (2013a))

Corr(Yγ(t), Yγ(s)) = Eγ(−θtγ) + γθtγ

Γ(1 + γ)

s/t∫
0

Eγ(−θtγ(1− z)γ)
z1−γ dz. (4.3)

6



Remark 4.1. Notice that the integral representation (4.1) for CF of the general delayed
stochastic process depends only on the CF of the non-delayed process {X(t), t ≥ 0}
(i.e. the outer stationary process) and the bivariate distribution H(u, v) of the process
{Et, t ≥ 0}. So if two non-delayed processes have the same CF, their delayed counterparts
will have the same CF as well.

The next theorem provides a general formula for correlation structure of the dCAR(p)
process for which the corresponding characteristic equation (2.6) has distinct roots. In
the case of non-distinct roots, extended techniques must be used (see Theorem 4.8).
Theorem 4.2. Let {Xp(t), t ≥ 0} be the stationary Lévy-driven CAR(p) process defined
in section 2 with the autocovariance function given by (2.7). Then the correlation function
of the corresponding dCAR(p) process {Xγ(t), t ≥ 0} is given by

Corr(Xγ(t), Xγ(s)) =

∑
λ:C(λ)=0

(C ′(λ)C(−λ))−1
[
Eγ(λtγ)− γλtγ

Γ(1+γ)

s/t∫
0

Eγ(λtγ(1−z)γ)
z1−γ dz

]
∑

λ:C(λ)=0
(C ′(λ)C(−λ))−1

(4.4)
where t ≥ s > 0.
Proof.

Corr(Xγ(t), Xγ(s)) = Corr(Xp(Et), Xp(Es))

=
∞∫
0

∞∫
0

Corr(Xp(t), Xp(s))H(du, dv)

= 1∑
λ:C(λ)=0

(C ′(λ)C(−λ))−1

∞∫
0

∞∫
0

∑
λ:C(λ)=0

eλ|t−s|

C ′(λ)C(−λ)H(du, dv)

= 1∑
λ:C(λ)=0

(C ′(λ)C(−λ))−1

∑
λ:C(λ)=0

1
C ′(λ)C(−λ)

∞∫
0

∞∫
0

eλ|u−v|H(du, dv),

(4.5)

where the integral after the first equality is a Lebesgue-Stieltjes integral with respect to
the bivariate distribution functionH(u, v) = P(Et ≤ u,Es ≤ v) of the process {Et, t ≥ 0}.
Since integrands in (4.5) have the same form as the ACF of the stationary Pearson dif-
fusion, from (4.3) (i.e. Theorem 3.1., Leonenko et al. (2013a)) the result immediately
follows.

Remark 4.3. The last theorem is also valid for complex eigenvalues. To see this, notice that
the Laplace transform of the density of random variable Et (3.2) is valid for any complex
number s and procedure from Leonenko et al. (2013a) is valid for complex eigenvalues as
well.
Corollary 4.4 (dCAR(1) process). Let {X1(t), t ≥ 0} be the stationary Lévy-driven
CAR(1) process defined in section 2 with the correlation function given by (2.8). Then
the correlation function of the corresponding dCAR(1) process {Xγ(t), t ≥ 0} is given by

Corr(Xγ(t), Xγ(s)) = Eγ(−α1t
γ) + γα1t

γ

Γ(1 + γ)

s/t∫
0

Eγ(−α1t
γ(1− z)γ)
z1−γ dz (4.6)

where t ≥ s > 0.
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Proof. In this case, characteristic equation is of the form

C(z) = z + α1 = 0,

where α1 > 0. Now simply apply Theorem 4.2 and the result follows.

Remark 4.5. If in the outer process, stationary Lévy-driven CAR(1) process is replaced
with the stationary CAR(1) process driven by Brownian motion, the outer process be-
comes the Ornstein-Uhlenbeck process (one of the six Pearson diffusions), while the cor-
responding dCAR(1) process becomes the fractional Ornstein-Uhlenbeck process. For
details regarding fractional Ornstein-Uhlenbeck process and other fractional Pearson dif-
fusions we refer to Leonenko et al. (2013a,b, 2017).

Corollary 4.6 (the over-damped case). Let {X2(t), t ≥ 0} be the stationary Lévy-driven
CAR(2) process defined in section 2 with the correlation function given by (2.10). Then
the correlation function of the corresponding dCAR(2) process {Xγ(t), t ≥ 0} is given by

Corr(Xγ(t), Xγ(s)) =λ1Eγ(λ2t
γ)− λ2Eγ(λ1t

γ)
λ1 − λ2

+

+ λ1λ2

λ1 − λ2

γtγ

Γ(1 + γ)

s/t∫
0

Eγ(λ1t
γ(1− z)γ)− Eγ(λ2t

γ(1− z)γ)
z1−γ dz

(4.7)

where t ≥ s > 0.

Proof. In this case, characteristic equation is of the form

C(z) = z2 + α1z + α2 = 0,

where α1, α2 > 0, D = α2
1 − 4α2 > 0, while the corresponding roots are λ1 and λ2. Now

simply apply Theorem 4.2 and the result follows.

Corollary 4.7 (the under-damped case). Let {X2(t), t ≥ 0} be the stationary Lévy-driven
CAR(2) process defined in section 2 with the correlation function given by (2.11). Then
the correlation function of the corresponding dCAR(2) process {Xγ(t), t ≥ 0} is given by

Corr(Xγ(t), Xγ(s)) =λEγ(λ̄t
γ)− λ̄Eγ(λtγ)
λ− λ̄

+ λλ̄

λ− λ̄
γtγ

Γ(1 + γ)

s/t∫
0

Eγ(λtγ(1− z)γ)− Eγ(λ̄tγ(1− z)γ)
z1−γ dz (4.8)

where t ≥ s > 0.

Proof. In this case, characteristic equation is of the form

C(z) = z2 + α1z + α2 = 0,

where α1, α2 > 0, D = α2
1 − 4α2 < 0, while the corresponding roots are λ and λ̄. Now

simply apply Theorem 4.2 and the result follows.
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4.1 The critically-damped case
Theorem 4.8. Let {X2(t), t ≥ 0} be the stationary Lévy-driven CAR(2) process defined
in section 2 with the correlation function given by (2.13). Then the correlation function
of the corresponding dCAR(2) process {Xγ(t), t ≥ 0} is given by

Corr(Xγ(t), Xγ(s)) = α1

2γ t
γEγ, γ

(
−α1

2 t
γ
)

+ Eγ
(
−α1

2 t
γ
)

+ α2
1 t

2γ

4Γ(1 + γ)

s/t∫
z=0

zγ−1(1− z)γEγ, γ
(
−α1

2 t
γ(1− z)γ

)
dz (4.9)

where t ≥ s > 0.

Proof.

Corr(Xγ(t), Xγ(s)) = Corr(X2(Et), X2(Es)) =
∞∫
0

∞∫
0

Corr(X(t), X(s))H(du, dv)

=
∞∫
0

∞∫
0

(
1 + α1

2 |u− v|
)
e−

α1
2 |u−v|H(du, dv),

(4.10)

where the last integral is a Lebesgue-Stieltjes integral with respect to the bivariate distri-
bution function H(u, v) = P(Et ≤ u,Es ≤ v) of the process {Et, t ≥ 0}.
Let F (u, v) =

(
1 + α1

2 |u− v|
)
e−

α1
2 |u−v|. Following bivariate integration by parts approach

as in Leonenko et al. (2013a), i.e. bivariate integration by parts formula (4.2) we obtain
∞∫
0

∞∫
0

F (u, v)H(du, dv) =
∞∫
0

∞∫
0

P(Et ≥ u,Es ≥ v)F (du, dv) +
∞∫
0

P(Et ≥ u)F (du, 0)+

+
∞∫
0

P(Es ≥ v)F (0, dv) + 1

= I1 + I2 + I3 + 1. (4.11)

Since F (du, v) = fv(u)du for v ≥ 0 where

fv(u) = −α
2
1

4 (u− v)e−
α1
2 (u−v)I(u > v)− α2

1
4 (u− v)e−

α1
2 (v−u)I(u ≤ v),

using (3.2), it follows

I2 =
∞∫
0

P(Et ≥ u)F (du, 0) =
∞∫
0

P(Et ≥ u)
(
−α

2
1

4 ue
−α1

2 u

)
du

= α1

2 e
−α1

2 uuP(Et ≥ u)
∣∣∣∣∞
0
−
∞∫
0

α1

2 e
−α1

2 u (P(Et ≥ u)− uft(u)) du

=
∞∫
0

α1

2 e
−α1

2 uuft(u)du−
∞∫
0

α1

2 e
−α1

2 uP(Et ≥ u)du

=
∞∫
0

α1

2 e
−α1

2 uuft(u)du+ Eγ
(
−α1

2 t
γ
)
− 1. (4.12)

9



Similarly,

I3 =
∞∫
0

P(Es ≥ v)F (0, dv) =
∞∫
0

α1

2 e
−α1

2 vvfs(v)dv + Eγ
(
−α1

2 s
γ
)
− 1. (4.13)

Now, (4.11) reduces to
∞∫
0

∞∫
0

F (u, v)H(du, dv) = I1+
∞∫
0

α1

2 e
−α1

2 uu (fs(u) + ft(u)) du+Eγ
(
−α1

2 t
γ
)

+Eγ
(
−α1

2 s
γ
)
−1.

Since F (du, dv) = h(u, v)dudv, where

h(u, v) =
(
α2

1
4 e
−α1

2 (u−v) − α3
1

8 (u− v)e−
α1
2 (u−v)

)
I(u > v)+

+
(
α2

1
4 e
−α1

2 (v−u) − α3
1

8 (v − u)e−
α1
2 (v−u)

)
I(u ≤ v)

and the process {Et, t ≥ 0} is nondecreasing, it follows that for u ≤ v

P(Et ≥ u,Es ≥ v) = P (Es ≥ v).

Write
I1 = I

(a)
1 + I

(b)
2 + I

(c)
3 ,

where

I
(a)
1 =

∫
u<v

P(Et ≥ u,Es ≥ v)F (du, dv) =
∫
u<v

P(Es ≥ v)F (du, dv)

I
(b)
1 =

∫
u=v

P(Et ≥ u,Es ≥ v)F (du, dv) =
∫
u=v

P(Es ≥ v)F (du, dv)

I
(c)
1 =

∫
u>v

P(Et ≥ u,Es ≥ v)F (du, dv).

Once again, using integration by parts and (3.2) we obtain

I
(a)
1 = α2

1
4

∞∫
v=0

v∫
u=0

P(Es ≥ v)e−
α1
2 (v−u)dudv − α3

1
8

∞∫
v=0

v∫
u=0

P(Es ≥ v)(v − u)e−
α1
2 (v−u)dudv

= α2
1

4

∞∫
0

P(Es ≥ v)ve−
α1
2 vdv

= 1−
∞∫
0

α1

2 e
−α1

2 vvfs(v)dv − Eγ
(
−α1

2 s
γ
)
. (4.14)

Notice that I(a)
1 = −I3.

Since function fv(u)du = F (du, v) does not have a jump at u = v it follows

I
(b)
1 =

∫
u=v

P(Es ≥ v)F (du, dv) = 0. (4.15)
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Next,

I
(c)
1 = α2

1
4

∞∫
v=0

P(Et ≥ u,Es ≥ v)
∞∫

u=v

e−
α1
2 (u−v)dudv − α3

1
8

∞∫
v=0

P(Et ≥ u,Es ≥ v)
∞∫

u=v

(u− v)e−
α1
2 (u−v)dudv.

(4.16)
From Leonenko et al. (2013a), p. 741 we have

P(Et ≥ u,Es ≥ v) =
s∫

y=0

γ

y
vfy(v)

t−y∫
x=0

γ

x
(u− v)fx(u− v)dxdy.

Now using this expression together with Fubini theorem in (4.16) we obtain

I
(c)
1 = α2

1
4

s∫
y=0

γ

y

t−y∫
x=0

γ

x

∞∫
v=0

vfy(v)
∞∫

u=v

(u− v)fx(u− v)e−
α1
2 (u−v)du dv dx dy

− α3
1

8

s∫
0

γ

y

t−y∫
x=0

γ

x

∞∫
v=0

vfy(v)
∞∫

u=v

(u− v)2fx(u− v)e−
α1
2 (u−v)du dv dx dy.

Since
∞∫

u=v

(u− v)fx(u− v)e−
α1
2 (u−v)du =

∞∫
0

zfx(z)e−
α1
2 zdz, (4.17)

∞∫
u=v

(u− v)2fx(u− v)e−
α1
2 (u−v)du =

∞∫
0

z2fx(z)e−
α1
2 zdz (4.18)

and ∞∫
v=0

vfy(v)dv = E[Es] = yγ

Γ(1 + γ) ,

(see Baeumer & Meerschaert (2007), Eq. (9)) it follows

I
(c)
1 = α2

1γ
2

4Γ(1 + γ)

s∫
y=0

1
y1−γ

t−y∫
x=0

1
x

∞∫
0

zfx(z)e−
α1
2 zdz dx dy

− α3
1γ

2

8Γ(1 + γ)

s∫
y=0

1
y1−γ

t−y∫
x=0

1
x

∞∫
0

z2fx(z)e−
α1
2 zdz dx dy. (4.19)

As in Leonenko et al. (2013a), we proceed by expanding e−
α1
2 z in (4.17) and (4.18) to

obtain
∞∫
0

zfx(z)e−
α1
2 zdz = − 2

α1

∞∑
j=0

(
−α1

2 x
γ
)j
j

Γ(1 + γj)

and
∞∫
0

z2fx(z)e−
α1
2 zdz = 4

α2
1

 ∞∑
j=0

(
−α1

2 x
γ
)j
j2

Γ(1 + γj) −
∞∑
j=0

(
−α1

2 x
γ
)j
j

Γ(1 + γj)

 .

11



On the other hand,
d

dx
Eγ
(
−α1

2 x
γ
)

= γ

x

∞∑
j=0

(
−α1

2 x
γ
)j
j

Γ(1 + γj) (4.20)

and
d2

dx2Eγ
(
−α1

2 x
γ
)

= − γ

x2

∞∑
j=0

(
−α1

2 x
γ
)j
j

Γ(1 + γj) + γ2

x2

∞∑
j=0

(
−α1

2 x
γ
)j
j2

Γ(1 + γj) ,

which implies
∞∫
0

zfx(z)e−
α1
2 zdz = − 2x

γα1

d

dx
Eγ
(
−α1

2 x
γ
)

(4.21)

and
∞∫
0

z2fx(z)e−
α1
2 zdz = 4

α2
1

[
x2

γ2
d2

dx2Eγ
(
−α1

2 x
γ
)

+
(
x

γ2 −
x

γ

)
d

dx
Eγ
(
−α1

2 x
γ
)]
.

Using these expressions in (4.19) we obtain

I
(c)
1 = − α1γ

2Γ(1 + γ)

s∫
y=0

1
y1−γ

t−y∫
x=0

d

dx
Eγ
(
−α1

2 x
γ
)
dx dy

− α1γ
2

2Γ(1 + γ)

s∫
y=0

1
y1−γ

t−y∫
x=0

[
x

γ2
d2

dx2Eγ
(
−α1

2 x
γ
)

+
(

1
γ2 −

1
γ

)
d

dx
Eγ
(
−α1

2 x
γ
)]
dx dy

= − α1

2Γ(1 + γ)

s∫
y=0

1
y1−γ

t−y∫
x=0

[
x
d2

dx2Eγ
(
−α1

2 x
γ
)

+ d

dx
Eγ
(
−α1

2 x
γ
)]
dx dy

Since
x
d2

dx2Eγ
(
−α1

2 x
γ
)

+ d

dx
Eγ
(
−α1

2 x
γ
)

=
(
x
d

dx
Eγ
(
−α1

2 x
γ
))′

it follows

I
(c)
1 = − α1

2Γ(1 + γ)

s∫
y=0

1
y1−γ

x d
dx
Eγ
(
−α1

2 x
γ
) ∣∣∣∣∣∣

x=t−y

 dy.
Using the definition of the two-parametric Mittag-Leffler function Eα, β(·) together with
(4.20), after straightforward calculations we obtain[

x
d

dx
Eγ
(
−α1

2 x
γ
)] ∣∣∣∣∣∣

x=z

= −α1

2 z
γEγ,γ

(
−α1

2 z
γ
)

(4.22)

so that

I
(c)
1 = α2

1
4Γ(1 + γ)

s∫
y=0

yγ−1(t− y)γEγ, γ
(
−α1

2 (t− y)γ
)
dy.

Substituting y = t z in the last integral it follows

I
(c)
1 = α2

1 t
2γ

4Γ(1 + γ)

s/t∫
z=0

zγ−1(1− z)γEγ, γ
(
−α1

2 t
γ(1− z)γ

)
dz. (4.23)
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On the other hand, (4.21) and (4.22) imply that (4.12) reduces to

I2 = α1

2γ t
γEγ, γ

(
−α1

2 t
γ
)

+ Eγ
(
−α1

2 t
γ
)
− 1. (4.24)

Finally, combining together (4.13), (4.14), (4.15), (4.23) and (4.24) we obtain

Corr(Xγ(t), Xγ(s)) = I1 + I2 + I3 + 1 = I
(a)
1 + I

(b)
1 + I

(c)
1 + I2 + I3 + 1

= α1

2γ t
γEγ, γ

(
−α1

2 t
γ
)

+ Eγ
(
−α1

2 t
γ
)

+ α2
1 t

2γ

4Γ(1 + γ)

s/t∫
z=0

zγ−1(1− z)γEγ, γ
(
−α1

2 t
γ(1− z)γ

)
dz. (4.25)

Remark 4.9. When t = s, it must be true that Corr(Xγ(t), Xγ(s)) = 1.
For t = s (4.23) becomes

I
(c)
1 = α2

1 t
2γ

4Γ(1 + γ)

1∫
z=0

zγ−1(1− z)γEγ, γ
(
−α1

2 t
γ(1− z)γ

)
dz

= − α1t
γ

2Γ(1 + γ)

1∫
z=0

zγ−1
[
x
d

dx
Eγ
(
−α1

2 x
γ
)] ∣∣∣∣∣∣

x=t(1−z)

dz

= − α1t
γγ

2Γ(1 + γ)

1∫
z=0

zγ−1
∞∑
j=0

(
−α1

2 t
γ(1− z)γ

)j
j

Γ(1 + γj) dz

= − α1t
γγ

2Γ(1 + γ)

∞∑
j=0

(
−α1

2 t
γ
)j
j

Γ(1 + γj)

1∫
z=0

zγ−1(1− z)γjdz. (4.26)

Since formula for the beta density yields
x∫

0

ya−1(x− y)b−1dy = B(a, b)xa+b−1

where B(a, b) := Γ(a)Γ(b)
Γ(a+b) , a > 0, b > 0, (4.26) reduces to

I
(c)
1 = −α1t

γ

2
γΓ(γ)

Γ(1 + γ)

∞∑
j=0

(
−α1

2 t
γ
)j
j

Γ(1 + γ(j + 1))

=
∞∑
j=0

(
−α1

2 t
γ
)j+1

j

Γ(1 + γ(j + 1))

=
∞∑
j=0

(
−α1

2 t
γ
)j+1

(j + 1)
Γ(1 + γ(j + 1)) −

∞∑
j=0

(
−α1

2 t
γ
)j+1

Γ(1 + γ(j + 1))

= t

γ

d

dt
Eγ
(
−α1

2 t
γ
)
− Eγ

(
−α1

2 t
γ
)

+ 1

= −α1

2γ t
γEγ,γ

(
−α1

2 t
γ
)
− Eγ

(
−α1

2 t
γ
)

+ 1.

Now, from (4.25) it follows Corr(Xγ(t), Xγ(s)) = 1.
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Remark 4.10. For dCAR(p) process of order p > 2 such that the non-distinct roots of the
corresponding characteristic equation (2.6) have the highest multiplicity m = 2, one can
expect similar correlation structure as in Theorem 4.8. On the other hand, with higher
multiplicities (m > 2), higher derivatives of Mittag-Leffler function should appear in the
correlation structure, and case-by-case analysis is expected.

5 Long-range dependence for dCAR(p) process
In this section we propose definition for the long-range dependence of the non-stationary
stochastic process and apply it for the dCAR(p) processes, emphasizing low orders.
Definition 5.1. Let {X(t), t ≥ 0} be the non-stationary stochastic process with the
correlation function Corr(X(t), X(s)) which satisfies

Corr(X(t), X(s)) ∼ c(s) t−d, t→∞,

i.e.,
lim
t→∞

Corr(X(t), X(s))
t−d

= c(s),

for a fixed s > 0, some constant c(s) > 0 and d > 0.
We say that {X(t), t ≥ 0} has the long-range dependence if d ∈ 〈0, 1〉 and the short-range
dependence if d ∈ 〈1, 2〉.
Remark 5.2. Long-range dependence is usually observed for second-order stationary pro-
cesses in terms of covariance function. In case of non-stationary second-order processes
natural extension is given via Definition 5.1. For brief discussion and other possible defini-
tions of long-range dependence in various settings see Heyde & Yang (1997). Long-range
dependence property in the form of Definition 5.1 was first used in Maheshwari & Vel-
laisamy (2016) and Maheshwari & Vellaisamy (2017). Moreover, equivalent form was used
in Leonenko et al. (2013a).
Before we proceed, we need some technical results regarding Mittag-Leffler functions.
First notice that

Eγ(θtγ) ∼ −
1

θΓ(1− γ)tγ , t→∞, (5.1)

where θ is a complex number such that Re θ < 0 and 0 < γ < 1 (see Theorem 1.4.,
Podlubny (1998)). Since

Eγ, γ(θtγ) ∼ O(|θtγ|−2), t→∞
(again, see Theorem 1.4., Podlubny (1998)), from (4.22) and (5.1) immediately after
applying L’Hospital’s rule for complex valued functions (see Carter (1958)) it follows

Eγ, γ(θtγ) ∼
γ

θ2Γ(1− γ)t2γ , t→∞. (5.2)

On the other hand, if θ is a complex number such that Re θ < 0, 0 < γ < 1 and C a real
constant, then (see Theorem 1.6., Podlubny (1998))

|Eγ(θtγ)| ≤
C

1 + |θ|tγ , t > 0, (5.3)

|Eγ, γ(θtγ)| ≤
C

1 + |θ|tγ , t > 0. (5.4)

Next, we prove two lemmas needed for the proof of the long-range dependence for dCAR(p)
processes.
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Lemma 5.3. Let θ be a complex number such that Re θ < 0. If 0 < γ < 1 and t ≥ s > 0
then

s/t∫
0

Eγ(θtγ(1− z)γ)
z1−γ dz ∼ − 1

θγΓ(1− γ)
sγ

t2γ
, t→∞.

Proof. By change of variable z = s/ty we have

s/t∫
0

Eγ(θtγ(1− z)γ)
z1−γ dz =

(
s

t

)γ 1∫
0

Eγ(θtγ(1− sy/t)γ)
y1−γ dy.

From (5.3) we see that last integrand is bounded with g(y) = C/y1−γ and
∫ 1

0 g(y) < ∞,
so by using Lebesgue’s dominated convergence theorem together with (5.1) we obtain

(
s

t

)γ 1∫
0

Eγ(θtγ(1− sy/t)γ)
y1−γ dy ∼−

(
s

t

)γ 1
θΓ(1− γ)tγ

1∫
0

yγ−1dy, t→∞

= − 1
θγΓ(1− γ)

sγ

t2γ
, t→∞.

Lemma 5.4. Let θ be a complex number such that Re θ < 0. If 0 < γ < 1 and t ≥ s > 0
then

s/t∫
z=0

zγ−1(1− z)γEγ, γ (θtγ(1− z)γ) dz ∼ 1
θ2Γ(1− γ)

sγ

t3γ
, t→∞.

Proof. Once again, by change of variable z = s/ty we have

s/t∫
z=0

zγ−1(1− z)γEγ, γ (θtγ(1− z)γ) dz =
(
s

t

)γ ∫ 1

0
yγ−1 (1− sy/t)γ Eγ, γ (θtγ(1− sy/t)γ) dy.

From (5.4) we see that last integrand is bounded with g(y) = Cyγ−1 and
∫ 1

0 g(y) <∞, so
by using Lebesgue’s dominated convergence theorem together with (5.2) we obtain(
s

t

)γ ∫ 1

0
yγ−1 (1− sy/t)γ Eγ, γ (θtγ(1− sy/t)γ) dy ∼

(
s

t

)γ γ

θ2Γ(1− γ)t2γ
∫ 1

0
yγ−1 (1− sy/t)−γ dy

∼
(
s

t

)γ γ

θ2Γ(1− γ)t2γ
∫ 1

0
yγ−1dy

= 1
θ2Γ(1− γ)

sγ

t3γ
, t→∞.

Theorem 5.5. Let {Xγ(t), t ≥ 0} be the dCAR(p) process as in Theorem 4.2 with cor-
responding correlation function (4.4). Then stochastic process {Xγ(t), t ≥ 0} has the
long-range dependence property, i.e. for a fixed s > 0

Corr(Xγ(t), Xγ(s)) ∼
t−γ

Γ(1− γ)

−
∑

λ:C(λ)=0
(λC ′(λ)C(−λ))−1

∑
λ:C(λ)=0

(C ′(λ)C(−λ))−1 + sγ

Γ(1 + γ)

 , t→∞.
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Proof. Since distinct roots λ of equation (2.6) have negative real parts, using (5.1) together
with Lemma 5.3 it follows

Corr(Xγ(t), Xγ(s)) =

∑
λ:C(λ)=0

(C ′(λ)C(−λ))−1
[
Eγ(λtγ)− γλtγ

Γ(1+γ)

s/t∫
0

Eγ(λtγ(1−z)γ)
z1−γ dz

]
∑

λ:C(λ)=0
(C ′(λ)C(−λ))−1

∼

∑
λ:C(λ)=0

(C ′(λ)C(−λ))−1
[
− 1
λΓ(1−γ)tγ + γλtγ

Γ(1+γ) ·
1

λγΓ(1−γ)
sγ

t2γ

]
∑

λ:C(λ)=0
(C ′(λ)C(−λ))−1 , t→∞

= t−γ

Γ(1− γ)

−
∑

λ:C(λ)=0
(λC ′(λ)C(−λ))−1

∑
λ:C(λ)=0

(C ′(λ)C(−λ))−1 + sγ

Γ(1 + γ)

 , t→∞.

Corollary 5.6 (dCAR(1) process). Let {Xγ(t), t ≥ 0} be the dCAR(1) process as in
Corollary 4.4 with corresponding correlation function (4.6). Then stochastic process {Xγ(t), t ≥
0} has the long-range dependence property, i.e. for a fixed s > 0

Corr(Xγ(t), Xγ(s)) ∼
t−γ

Γ(1− γ)

(
1
α1

+ sγ

Γ(1 + γ)

)
, t→∞.

Proof. In this case, characteristic equation is of the form

C(z) = z + α1 = 0,

where α1 > 0. Now simply apply Theorem 5.5 and the result follows.

Corollary 5.7 (the over-damped case). Let {Xγ(t), t ≥ 0} be the dCAR(2) process in the
over-damped case, i.e. as in Corollary 4.6 with corresponding correlation function (4.7).
Then stochastic process {Xγ(t), t ≥ 0} has the long-range dependence property, i.e. for a
fixed s > 0

Corr(Xγ(t), Xγ(s)) ∼
t−γ

Γ(1− γ)

(
−λ1 + λ2

λ1λ2
+ sγ

Γ(1 + γ)

)
, t→∞.

Proof. In this case, characteristic equation is of the form

C(z) = z2 + α1z + α2 = 0,

where α1, α2 > 0, D = α2
1 − 4α2 > 0, while the corresponding roots are λ1 and λ2. Now

simply apply Theorem 5.5 and the result follows.

Corollary 5.8 (the under-damped case). Let {Xγ(t), t ≥ 0} be the dCAR(2) process in
the under-damped case, i.e. as in Corollary 4.7 with corresponding correlation function
(4.8). Then stochastic process {Xγ(t), t ≥ 0} has the long-range dependence property, i.e.
for a fixed s > 0

Corr(Xγ(t), Xγ(s)) ∼
t−γ

Γ(1− γ)

(
−λ+ λ̄

λλ̄
+ sγ

Γ(1 + γ)

)
, t→∞.
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Proof. In this case, characteristic equation is of the form

C(z) = z2 + α1z + α2 = 0,

where α1, α2 > 0, D = α2
1 − 4α2 < 0, while the corresponding roots are λ and λ̄. Now

simply apply Theorem 5.5 and the result follows.

Theorem 5.9 (the critically-damped case). Let {Xγ(t), t ≥ 0} be the dCAR(2) process in
the critically-damped case, i.e. as in Theorem 4.8 with corresponding correlation function
(4.9). Then stochastic process {Xγ(t), t ≥ 0} has the long-range dependence property, i.e.
for a fixed s > 0

Corr(Xγ(t), Xγ(s)) ∼
t−γ

Γ(1− γ)

(
4
α1

+ sγ

Γ(1 + γ)

)
, t→∞.

Proof. Since α1 > 0, using (5.1), (5.2) together with Lemma 5.4 for θ = −α1/2 it follows

Corr(Xγ(t), Xγ(s)) = α1

2γ t
γEγ, γ

(
−α1

2 t
γ
)

+ Eγ
(
−α1

2 t
γ
)

+ α2
1 t

2γ

4Γ(1 + γ)

s/t∫
z=0

zγ−1(1− z)γEγ, γ
(
−α1

2 t
γ(1− z)γ

)
dz

∼
α1

2γ t
γ · 4γ
α2

1Γ(1− γ)t2γ + 2
α1Γ(1− γ)tγ + α2

1 t
2γ

4Γ(1 + γ) ·
4

α2
1Γ(1− γ)

sγ

t3γ

= t−γ

Γ(1− γ)

(
4
α1

+ sγ

Γ(1 + γ)

)
, t→∞.

6 Distribution of dCAR(p) processes
Let

p(x, t) := d

dx
P (X(t) ≤ x)

denote the density of the Lévy-driven CAR(p) process {X(t), t ≥ 0}, and like in previous
sections, let

ft(x) = d

dx
P (E(t) ≤ x)

denote the density of the inverse of the γ-stable subordinator {E(t), t ≥ 0}. Then for the
density of the dCAR(p) process {Xγ(t), t ≥ 0}

q(x, t) := d

dx
P (Xγ(t) ≤ x) = d

dx
P (X(E(t)) ≤ x)

the following representation is valid

q(x, t) =
∞∫
0

p(x, s)ft(s)ds. (6.1)
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To see this, since X(t) and E(t) are independent, using conditional argument yields

P (X(E(t)) ≤ x) = E [P (X(E(t)) ≤ x) |E(t)]

=
∞∫
0

P(X(u) ≤ x|E(t) = u)ft(u)du

=
∞∫
0

P(X(u) ≤ x)ft(u)du.

After differentiating (which can be justified by the dominated convergence theorem) we
arrive at (6.1).
Since the density ft(x) of the process {E(t), t ≥ 0} is given via (3.1), it is clear that once
we know the density p(x, t) of the process {X(t), t ≥ 0}, we can calculate the density
q(x, t) of the dCAR(p) process {Xγ(t), t ≥ 0} via (6.1).

Example 6.1. Let us consider the non-stationary CAR(1) process with L(t) = W (t), i.e.
driven by the standard Brownian motion. SDE (2.2) reduces to

dX(t) + α1X(t)dt = dW (t).

Therefore CAR(1) process reduces to the well known Ornstein-Uhlenbeck diffusion with
transition density (cf. Karlin & Taylor (1981) page 332)

p(x;x0, t) = 1√
2π(2α1)−1(1− e1−2α1t)

exp
{
− x− x0e

−α1t

(α1)−1(1− e−2α1t)

}
. (6.2)

If we denote probability density of the initial distribution of CAR(1) process with p0, then
the density of CAR(1) process is given by

p(x, t) =
∫
R

p0(x0)p(x;x0, t)dx0,

where the transition density p(x;x0, t) is given by (6.2). Now, density of the corresponding
dCAR(1) process, i.e. expression (6.1) becomes

q(x, t) =
∫
R

p0(x0)
 ∞∫

0

p(x;x0, s)ft(s)ds
 dx0,

where p0 is the initial distribution of the non-stationary CAR(1) process, ft is the proba-
bility density of the inverse of the stable subordinator (3.1) and the transition density of
CAR(1) process p(x;x0, s) is given by (6.2).

However, in this paper, we consider only stationary Lévy-driven CAR(p) process
{X(t), t ≥ 0}. If m(x) denotes its probability density, then from (6.1) it is clear that the
density of corresponding dCAR(p) process stays the same over all time, i.e. it has the
probability density m(x). Therefore, density of the dCAR(p) process is the same as the
density of the corresponding stationary Lévy-driven CAR(p) process.
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Stationary Lévy-driven CAR(p) process {X(t), t ≥ 0} has cumulant generating func-
tion (cgf) for {X(t1), X(t2), . . . , X(tn), 0 < t1 < t2 < · · · < tn} (see Brockwell (2001b),
Brockwell & Marquardt (2005))

lnE [exp(iθ1X(t1) + · · ·+ iθnX(tn))]=
∞∫
0

ξ

(
n∑
i=1

θib
T eA(ti+u)e

)
du+

t1∫
0

ξ

(
n∑
i=1

θib
T eA(ti−u)e

)
du

+
t2∫
t1

ξ

(
n∑
i=2

θib
T eA(ti−u)e

)
+ . . .+

tn∫
tn−1

ξ
(
θnb

T eA(tn−u)e
)
du,

(6.3)

where b = [1, 0, . . . 0]T , b ∈ Rp, the characteristic function of the driving Lévy process
{L(t), t ≥ 0} of the CAR(p) process (see section 2)

φt(θ) := E
[
eiθL(t)

]
= etξ(θ),

where
ξ(θ) = iθm− 1

2θ
2s2 +

∫
R\{0}

(
eiθx − 1− iθx I|x|<1

)
ν(dx),

for some m ∈ R, s ≥ 0 and Lévy measure ν. In particular, marginal distribution of X(t)
(and therefore of Xγ(t) as well) has cgf

lnE [exp(iθX(t))] =
∞∫
0

ξ
(
θbT eAue

)
du. (6.4)

In our setting, (6.4) reduces to cases:

• stationary Lévy-driven CAR(1) process with the correlation function given by (2.8)

lnE [exp(iθX(t))] =
∞∫
0

ξ
(
θ e−α0u

)
du

• stationary Lévy-driven CAR(2) process with the correlation function given by (2.10)

lnE [exp(iθX(t))] =
∞∫
0

ξ

(
θ
eλ1u − eλ2u

λ1 − λ2

)
du

• stationary Lévy-driven CAR(2) process with the correlation function given by (2.11)

lnE [exp(iθX(t))] =
∞∫
0

ξ

(
θ
eλu − eλ̄u

λ− λ̄

)
du

• stationary Lévy-driven CAR(2) process with the correlation function given by (2.13)

lnE [exp(iθX(t))] =
∞∫
0

ξ
(
θ ue−

α1
2 u
)
du.
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Example 6.2. Let us consider the stationary Lévy-driven CAR(1) process with the driv-
ing process being compound Poisson process with finite jump-rate λ and bilateral exponen-
tial jump size distribution with probability density f(x) = β/2e−β|x|, while corresponding
characteristic exponent is of the form

ξ(θ) = − λθ2

β2 + θ2 .

Then, marginal distribution of the corresponding dCAR(1) process has cumulant gener-
ating function of the form

lnE [exp(iθXγ(t))] =
∞∫
0

ξ
(
θ e−α0u

)
du = − λ

2α0
ln
(

1 + θ2

β2

)
,

which shows that corresponding dCAR(1) process has marginals distributed as the dif-
ference between two independent gamma distributed random variables with exponent
λ/(2α0) and scale parameter β.

Many examples regarding distribution of stationary Lévy-driven CAR(p) process can be
found in Barndorff-Nielsen & Shephard (2001), Brockwell (2001b) and Brockwell & Mar-
quardt (2005).
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